Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots.

نویسندگان

  • Libin Tang
  • Rongbin Ji
  • Xiangke Cao
  • Jingyu Lin
  • Hongxing Jiang
  • Xueming Li
  • Kar Seng Teng
  • Chi Man Luk
  • Songjun Zeng
  • Jianhua Hao
  • Shu Ping Lau
چکیده

Glucose-derived water-soluble crystalline graphene quantum dots (GQDs) with an average diameter as small as 1.65 nm (∼5 layers) were prepared by a facile microwave-assisted hydrothermal method. The GQDs exhibits deep ultraviolet (DUV) emission of 4.1 eV, which is the shortest emission wavelength among all the solution-based QDs. The GQDs exhibit typical excitation wavelength-dependent properties as expected in carbon-based quantum dots. However, the emission wavelength is independent of the size of the GQDs. The unique optical properties of the GQDs are attributed to the self-passivated layer on the surface of the GQDs as revealed by electron energy loss spectroscopy. The photoluminescence quantum yields of the GQDs were determined to be 7-11%. The GQDs are capable of converting blue light into white light when the GQDs are coated onto a blue light emitting diode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and Optical Characterization of ZnO-Graphene Nanocomposite Quantum Dots

In this research, zinc oxide quantum dots and graphene nanocomposites were synthesized via two different methods; In the first (direct) method, ZnO-graphene Nanocomposites were made mixing the synthesized zinc oxide and graphene. In the second (indirect) method, zinc nitrate, graphene, and sodium hydroxide were used to made ZnO-graphene Nanocomposites. XRD, FTIR and Raman spectroscopy analyses ...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots.

Material that can emit broad spectral wavelengths covering deep ultraviolet, visible, and near-infrared is highly desirable. It can lead to important applications such as broadband modulators, photodetectors, solar cells, bioimaging, and fiber communications. However, there is currently no material that meets such desirable requirement. Here, we report the layered structure of nitrogen-doped gr...

متن کامل

Facile preparation and upconversion luminescence of graphene quantum dots.

A facile hydrazine hydrate reduction of graphene oxide (GO) with surface-passivated by a polyethylene glycol (PEG) method for the fabrication of graphene quantum dots (GQDs) with frequency upconverted emission is presented. And we speculate on the upconversion luminescence due to the anti-Stokes photoluminescence (ASPL), where the δE between the π and σ orbitals is near 1.1 eV.

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2012